ANALYSE DE RMN A 250 MHz DE LA METHYL-6-DESOXY-2'-URIDINE- CONFORMATION SYN PREFERENTIELLE EN SOLUTION AQUEUSE J. CADET^{*}, R. DUCOLOMB^{*}, et C. TAIEB^{**} Département de Recherche Fondamentale, Laboratoire de Radiobiologie - ^{**} Laboratoire de Chimie Organique Physique Centre d'Etudes Nucléaires, BP 85, Centre de tri, 38041 GRENOBLE (FRANCE)

(Received in France 26 May 1975; received in UK for publication 26 August 1975)

La substitution de la position 6 d'un ribonucléoside pyrimidique par un groupement volumineux entraîne d'importantes modifications conformationnelles de la molécule. Il a été établi par des études de dichroïsme circulaire [1] et de r.m.n (¹H et ¹³ C) [2,3] que l'aglycone de la méthyl-6-uridine adopte en solution une orientation *syn* autour de la liaison N-glycosidique. L'effet Cotton positif observé à 260 nm dans le spectre de dichroïsme circulaire de la méthyl-6 -désoxy-2'-uridine <u>1</u> [4,5] est généralement caractéristique des β nucléosides pyrimidiques en conformation *anti*. Toutefois ces seules données spectroscopiques ne permettent pas de définir sans ambiguïté la conformation rotationnelle de <u>1</u> autour de la liaison C-N [4]. L'analyse détaillée par r.m.n protonique à 250 MHz de <u>1</u>, de la (désoxy-2- β -D-ribofurannosyl)-3-méthyl-6-uracile <u>2</u> [5] et des diastéréoisomères 5 R^{°°} er 5 S^{°°}, de l'acide (désoxy-2- β -D-ribofurannosyl)-1-hydroxy-5-méthyl-5-barbiturique <u>3</u>a et <u>3</u>b [6] est présentée dans cette note. Les substances <u>2</u> et <u>3</u> dont l'une des deux fonctions carbonyles en ortho de la liaison C-N est située à proximité des

 $dR = desoxy-2-\beta-D$ ribofurannosyl

substituants endo du cycle furannique simulent le comportement de nucléosides en conformation syn [7]. Le modèle conformationnel voisin qui est proposé pour $\frac{1}{2}$, $\frac{2}{2}$ et $\frac{3}{2}$ est sensiblement différent de celui de la thymidine $\frac{4}{2}$ [8,9].

Attributions spectroscopiques.

Les spectres de r.m.n des nucléosides 0,1 M dans l'oxyde de deutérium ont été enregistrés sur un appareil CAMECA TSN 250 MHz à 20°C avec le tétradeutério-2,2,3,3-(triméthylsilyl) -3-propionate de sodium (TSP) placé comme référence interne. Les analyses spectrales ont été effectuées à l'aide du programme LAOCOON III. Les valeurs de déplacement chimique (δ) et les constantes de couplages qui sont présentées dans les tableaux 1 et 2 sont celles qui donnent la meilleure correspondance entre les spectres expérimental et simulé à l'ordinateur (fig. 1).

						_			
Nucléosides	H-6 (ou CH ₃)	H-5 (ou CH ₃)	H~1'	H-2'	H-2"	H-3'	H-4'	н-5' _в	^H 5'C
méthyl-6-désoxy-2'- uridine <u>l</u>	2.39	5.74	6.20	2.96	2.27	4.55	3.94	3.86	3.77
(désoxy-2-β-D-ribofu- rannosyl)-3-méthyl-6- uracile 2	2.16	5.63	6.68	2.87	2.22	4.56	3.95	3.85	3.76
acide (désoxy-2-6-D- ribofurannosyl)-1-hy- droxy-5-méthy1-5-bar birurique ^a <u>3</u>	-	1.72	6.47 6.49	2.70 2.87	2.28	4.56	3.94	Ъ	Ъ
thymidine 4	7.66	1.91	6.28	2.	39	4.48	4.03	3.86	3.79

Tableau I : Déplacements chimiques (δ_{ppm}) des protons de nucléosides dans D,0 (TSP.

a = Le mélange des nucléosides 3a et 3b est analysé globalement ; les seules différences de δ concernent H-1' et H-2'.

b = Ces valeurs n'ont pu être déterminées.

Tableau 2 : Constantes de couplage en Hz des protons osidiques.

Nucléosides	J _{1',2'}	J _{1',2"}	^J 2',2"	J _{2',3'}	^J 2",3'	^J 3',4'	J _{4',5'} B	^J 4',5'c	J5',5'C	^J 4',5' _B J ₄ ',5' _C (Σ)
1	5.2	8.6	- 13.9	8.2	5.7	5.8	3.4	6.7	- 12.0	10.1
2	5.9	8.8	- 13.7	7.9	5.4	5.2	3.6	6.4	- 12.0	10.0
3	5.8	8.7	- 13.9	8.0	5.3	5.2	а	а	а	а
4p ₹	7.0	7.0	-	5.6	5.6	3.7	3.6	5.0	- 12.1	8.6

a = Non déterminées

b = Une analyse de r.m.n de la thymidine a été effectuée récemment par Hruska et coll. [9].

Les spectres de 1, 2, 3 a et 3 b qui présentent de nombreuses analogies sont étudiés globalement. L'attribution de H-1', H-3' et H-4' repose sur des expériences de double irradiation. Le mode d'attribution de H-2' et de H-2" fait intervenir le concept pseudorotationnel récemment introduit en analyse conformationnelle des nucléosides et des nucléotides [10-12]. L'existence d'un équilibre dynamique entre les conformères $C_{3'endo}(N) \ddagger C_{2'endo}(S)$ ne conduit qu'à l'observation de valeurs moyennes de constante de couplage des protons du cycle osidique. Dans le modèle désoxyribofurannosique les angles dièdres définis respectivement par H-2", H-3' et H-3', H-4' sont sensiblement égaux, quelque soit l'équilibre conformationnel j il en résulte en raison de la similitude de l'environnement électronique de ces deux paires de protons une quasi-identité de J_{2",3}, et J_{3',4'}. Dans ces conditions J_{2',3}, est supérieur à J_{2",3}' (tableau 2) et H-2' résonne à des champs plus faibles que H-2". Une conformation pseudo-axiale des protons H-3', H-4' ou H-2", H-3' est associée avec une conformation pseudo-équatoriale des protons H-1', H-2' et inversement. La comparaison des valeurs de J_{3',4'}, et J_{1',2'} (tableau 2)

Fig 1: Représentation schematique des conformères N et S et de l'angle χ. Spectres expérimental (A) et simulé (B) de la méthyl-6-désoxy-2'-uridine.

avec celles de la désoxy-2'-uridine [13] $(J_{1',2'} = 6,5; J_{3'4'} = 4.0)$ montre que l'augmentation de $J_{3',4'}$ (> 5,2) de <u>1</u>, <u>2</u> et <u>3</u> se traduit effectivement par une diminution relative de $J_{1',2'}$ (< 5,9).

Conformation du cycle osidique.

De fortes valeurs de $J_{1',2"}$ et $J_{2',3'}$ comparativement à celles calculées pour chacun des conformères purs N et S [14] sont notées pour <u>1</u>, <u>2</u> et <u>3</u>.

Dans ces conditions la relation $P_N \approx J_{3',4'} \times 10$ qui permet de calculer la population conformationnelle de type N n'est que semi-quantitative. On note un déplacement important de l'équilibre N $\stackrel{\leftarrow}{\leftarrow}$ S vers le conformère N (\simeq 60 % pour <u>1</u> contre 40 % pour la thymidine <u>4</u>).

Conformation du groupement hydroxyméthyl exocyclique.

La conformation autour de la liaison exocyclique C(4')-C(5') est discutée en termes d'interconversion rapide entre les trois rotamères décalés gauche-gauche (gg), transgauche (tg) et gauche-trans (gt) qui présentent le niveau d'énergie le plus bas. La difficulté d'attribution de H-5'_B et H-5'_C ne permet qu'une détermination de l'importance relative de la population conformationnelle gg (P_{gg}) et de la somme (P_{tg} + P_{gt}). Une expression simplifiée qui relie P_{gg} à la somme J_{4',5'B} + J_{4',5'C} (ou Σ) a été proposée par Hruska et coll. [15] : Pgg \approx (13- Σ)/10. L'augmentation de Σ pour <u>1</u> et <u>2</u> par rapport à la thymidine <u>4</u> (Σ =8.6) traduit une déstabilisation du rotamère gg (Pgg = 29 % pour <u>1</u> et 30 % pour <u>2</u>) par répulsion entre la fonction carbonyle et le groupement OH(5'). Les nucléosides <u>1</u>, <u>2</u> n'obéissent pas à l'instar du (β -D-ribofurannosyl)-1-méthyl-6-uracile ou de l'acide (β -D-ribofurannosyl)cyanurique [9] à la relation linéaire entre Pgg et J_{3',4'} qui a été établie pour la plupart des nucléosides [15].

Angle de torsion sucre-base.

Les valeurs de déplacement chimique des protons osidiques dépendent étroitement de l'orientation de la base pyrimidique autour de la liaison C-N [16,17] qui peut être définie par l'angle χ [18]. L'anisotropie diamagnétique de la fonction carbonyle en *ortho* de la liaison Nglycosydique se manifeste chez la méthyl-6-uridine ou la méthyl-6-cytidine qui sont des conformères *syn* ($\chi \approx 105^{\circ}$) par un glissement de δ H-2' et à un degré moindre de δ H-3' vers les hautes fréquences [3]. Les nucléosides <u>1</u>, <u>2</u> et <u>3</u> donnent lieu à des observations similaires (tableau 1). Les protons *endo* sont déplacés vers les champs faibles (H-2'> H-3'> H-5'_B,H-5'_C) alors que l'on note un léger effet de blindage de H-4' et H-1'. Les valeurs différentes de δ H-2' pour chacun des nucléosides <u>1</u>, <u>2</u>, <u>3</u>a et <u>3</u>b sont vraisemblablement le reflet d'une variation de l'angle χ qui se traduit également par de légères modifications conformationnelles du cycle furannique (*vide supra*)

En conclusion la similitude des caractéristiques conformationnelles de 1, 2 et 3 implique que l'aglycone de la méthyl-6-désoxy-2'-uridine adopte une conformation rotationnelle *syn* autour de la liaison C-N.

Remerciements.

Nous remercions M. Reutenauer du Laboratoire de Résonance Magnétique du Département de Recherche Fondamentale du C.E.N. Grenoble pour l'enregistrement des spectres de r.m.n à 250 MHz.

Références.

- (1) MILES D.V., ROBINS M.J., ROBINS R.K., WINKLEY N.W. et EYRING M.- J. Am. Chem. Soc. <u>91</u>, 824 (1969)
- (2) SCHWEIZER M.P., WITKOWSKI J.T. et ROBINS R.K.- J. Am. Chem. Soc. 93, 237 (1971)
- (3) SCHWEIZER M.P., BANTA E.B., WITKOWSKI J.T. et ROBINS R.K.- J. Am. Chem. Soc. 95, 3770 (1973)
- (4) HOLY A., Coll. Czech. Chem. Comm. 38, 3912 (1973)
- (5) CADET J.- à paraître
- (6) CADET J. et TEOULE R.-Bull. Soc. Chim. Fr. p. 1565 (1974)
- (7) HRUSKA F.E., WOOD D.J., Mc CAIG T.N., SMITH A.A et HCLY A.- Can. J. Chem. 52, 497 (1973)
- (8) LEMIEUX R.V.- Can. J. Chem. 39, 116 (1961)
- (9) WOOD D.J., HRUSKA F.E. et OLGIVIE K.K.- Can. J. Chem. 52, 3353 (1974)
- (10) ALTONA C. et SUNDARALINGAM M., J. Am. Chem. Soc. 94, 8205 (1972)
- (11) SARMA R.H. et MYNOTT R.T.- J. Am. Chem. Soc. 95, 1041 (1973)
- (12) HRUSKA F.E. dans "Conformation of Biological Molecules and Polymers" (Bergman, E.D et Pullman B. Eds) vol. V, p. 345 (1973) The Israël Academy of Sciences and Humanities, Jérusalem.
- (13) SCHLEICH T., BLACKBURN B.J., LAPPER R.D. et SMITH I.C.P.- Biochem. 11, 137 (1972)
- (14) ALTONA C. et SUNDARALINGAM M.- J. Am. Chem. Soc. 95, 2333 (1973)
- (15) HRUSKA F.E., WOOD D.J., MYNOTT R.J. et SARMA R.H.- FEBS Letters 31, 153 (1973)
- (16) PRESTEGARD J.H. et CHAN S.P.- J. Am. Chem. Soc. 91, 2843 (1962)
- (17) HRUSKA F.E.- J. Am. Chem. Soc. 93, 1795 (1973)
- (18) SUNDARALINGAM M.- Biopolymers 7, 821 (1969).